wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the system of the equations: ax+by+cz=d,a2x+b2y+c2z=d2,a3x+b3y+c3z=d3.

A
x=d(d+b)(cd)a(ab)(ca),y=d(ad)(dc)b(ab)(bc),z=d(bd)(da)d(bc)(ca)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x=d(db)(cd)a(ab)(ca),y=d(a+d)(dc)b(ab)(bc),z=d(bd)(da)d(bc)(ca)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=d(db)(cd)a(ab)(ca),y=d(ad)(dc)b(ab)(bc),z=d(bd)(da)d(bc)(ca)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C x=d(db)(cd)a(ab)(ca),y=d(ad)(dc)b(ab)(bc),z=d(bd)(da)d(bc)(ca)
Given abca2b2c2a3b3c3xyz=dd2d3

Using Crammer's rule,

Δ=∣ ∣ ∣abca2b2c2a3b3c3∣ ∣ ∣=abc(ab)(bc)(ca)
Δx=∣ ∣ ∣dbcd2b2c2d3b3c3∣ ∣ ∣=dbc(db)(bc)(cd)
Δy=∣ ∣ ∣adca2d2c2a3d3c3∣ ∣ ∣=adc(ad)(dc)(ca)
Δz=∣ ∣ ∣abda2b2d2a3b3d3∣ ∣ ∣=abd(ab)(bd)(da)

x=ΔxΔ=d(db)(cd)a(ab)(ca),y=ΔyΔ=d(ad)(dc)b(ab)(bc),z=ΔzΔ=d(bd)(da)d(bc)(ca)
Hence, option C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon