The correct option is D c(a+b)a2+b2,−c(a−b)a2+b2
ax+by=c,bx−ay=c
Using the cross-multiplication method,
⇒x−ac−bc=yac−bc=1−a2−b2
⇒x=−ac−bc−a2−b2=−c(a+b)−(a2+b2)=c(a+b)a2+b2
and y=ac−bc−a2−b2=c(a−b)−(a2+b2)=−c(a−b)a2+b2
Therefore, x=c(a+b)a2+b2,y=−c(a−b)a2+b2