Solve the triangle in which a=(√3+1),b=(√3−1) and ∠C=60∘
Using tan (A−B)2=(a−c)a+bcotC2, we get
tan (A−B)2=22√3 cot 30∘=(1√3×√3)=1
⇒A−B2=45∘⇒A−B=90∘
Also, A + B + C = 180∘⇒A+B=120∘
On solving (i) and (ii), we get A = 105∘ and B=15∘.
Also, cos C=a2+b2−c22ab
⇒cos60∘=(√3+1)2+(√3−1)2−c22(√3+1)(√3−1)=8−c24
∴8−c24=12⇒8−c2=2⇒c2=6⇒c=√6.
Hence, c=√6cm,∠A=105∘ and ∠B=15∘