wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve this :


Prove that tan 5π2 + x cos (4π) sec(π)cosec π2 cot 7π3 sin π2 - x = 3 cosec x

Open in App
Solution

Dear student

tan5π2+xcos4πsecπcosecπ2cot7π3sinπ2-x=3cosecxConsider, LHStan5π2+xcos4πsecπcosecπ2cot7π3sinπ2-x=sin5π2+xcos5π2+xcos4πsecπcosecπ2cot7π3sinπ2-x=cos5π2sinx+cosxsin5π2cos5π2cosx-sin5π2sinxcos4πsecπcosecπ2cot7π3sinπ2-x=-cosxsinxcos4πsecπcosecπ2cot7π3sinπ2-x as cos5π2=cosπ2 and sin5π2=1=-cosxsinxcos4πsecπcosecπ2cot7π3cosx as sinπ2-x=cosx=cos4πsecπ-cotxcosecπ2cot7π3cosx=-cos4π secπ cotxcosecπ2cot7π3cosx=-cos4π secπ cotx33cosx as cosecπ2=1 and cot7π3=33=-1 secπ cotx33cosx as cos4π=1 and secπ=-1=cotx33cosx=3cosecxIdentity used:cos(a+b)=cosacosb-sinasinbsina+b=sinacosb+cosasinb
Regards

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine and Cosine Series
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon