wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: cosθsinθcos(90θ)cos(90θ)cosθsec(90θ)sin(90θ)sin(90θ)sinθcosec(90θ)+sec(90θ)=1sinθ

Open in App
Solution

LHS =cosθsinθcos(90θ)cos(90θ)cosθsec(90θ)sin(90θ)sin(90θ)sinθcosec(90θ)+sec(90θ)

=cosθsinθsinθsinθcosθcosecθcosθcosθsinθsecθ+cosecθ

=cosθsinθsin2θcosθ1sinθcos2θsinθ1cosθ+1sinθ

=cosθsinθsin3θcosθcos3θsinθ+1sinθ

=cosθsinθsinθcosθ(sin2θ+cos2θ)+1sinθ

=cosθsinθcosθsinθ+1sinθ

=1sinθ= RHS Hence Proved

Identities used:

i) cosecA=1sin A

ii) sin(90A)=cosA

iii) cos(90A)=sinA

iv) sec(90A)=cosecA

v) cosec(90A)=secA

vi) sin2A+cos2A=1

vii) secA=1cosA


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon