Prove that: cosθsinθ−cos(90∘−θ)cos(90∘−θ)cosθsec(90∘−θ)−sin(90∘−θ)sin(90∘−θ)sinθcosec(90∘−θ)+sec(90∘−θ)=1sinθ
LHS =cosθsinθ−cos(90∘−θ)cos(90∘−θ)cosθsec(90∘−θ)−sin(90∘−θ)sin(90∘−θ)sinθcosec(90∘−θ)+sec(90∘−θ)
=cosθsinθ−sinθsinθcosθcosecθ−cosθcosθsinθsecθ+cosecθ
=cosθsinθ−sin2θcosθ1sinθ−cos2θsinθ1cosθ+1sinθ
=cosθsinθ−sin3θcosθ−cos3θsinθ+1sinθ
=cosθsinθ−sinθcosθ(sin2θ+cos2θ)+1sinθ
=cosθsinθ−cosθsinθ+1sinθ
=1sinθ= RHS Hence Proved
Identities used:
i) cosecA=1sin A
ii) sin(90∘−A)=cosA
iii) cos(90∘−A)=sinA
iv) sec(90∘−A)=cosecA
v) cosec(90∘−A)=secA
vi) sin2A+cos2A=1
vii) secA=1cosA