1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Absolute Value Function
Solve this ...
Question
Solve this
(
α
+
1
)
2
(
α
+
1
)
2
−
(
α
+
1
)
(
β
+
1
)
+
(
β
+
1
)
2
(
β
+
1
)
2
−
(
α
+
1
)
(
β
+
1
)
to get
=
α
+
1
α
−
β
+
β
+
1
β
−
α
=
α
−
β
α
−
β
Open in App
Solution
(
α
+
1
)
2
(
α
+
1
)
2
−
(
α
+
1
)
(
β
+
1
)
+
(
β
+
1
)
2
(
β
+
1
)
2
−
(
α
+
1
)
(
β
+
1
)
=
α
+
1
α
−
β
+
β
+
1
β
−
α
=
α
−
β
α
−
β
L.H.S : -
(
α
+
1
)
2
(
α
+
1
)
2
−
(
α
+
1
)
(
β
+
1
)
+
(
β
+
1
)
2
(
β
+
1
)
2
−
(
α
+
1
)
(
β
+
1
)
⇒
(
α
+
1
)
2
(
α
+
1
)
(
α
+
1
−
β
−
1
)
+
(
β
+
1
)
2
(
β
+
1
)
(
β
+
1
−
α
−
1
)
⇒
α
+
1
α
−
β
+
β
+
1
β
−
α
R.H.S.
⇒
α
+
1
(
α
−
β
)
−
(
β
+
1
)
(
α
−
β
)
α
+
1
−
β
−
1
(
α
−
β
)
=
(
α
−
β
)
(
α
−
β
)
Proved.
Suggest Corrections
0
Similar questions
Q.
If
(
α
+
1
)
(
β
−
1
)
+
(
β
+
1
)
(
α
−
1
)
α
+
(
α
−
1
)
(
β
−
1
)
=
0
and
α
(
α
+
1
)
(
β
+
1
)
−
(
α
−
1
)
(
β
−
1
)
=
0
Also let
A
=
{
α
+
1
α
−
1
,
β
+
1
β
−
1
}
and
B
=
{
2
α
α
−
1
,
2
β
β
+
1
}
If
A
∩
B
≠
ϕ
, then find all the permissible value of parameter
"
a
"
.
Q.
By using
L
M
V
T
, prove that
β
−
α
1
+
β
2
<
tan
−
1
β
−
tan
−
1
α
<
β
−
α
1
+
α
2
,
β
−
α
<
0
.
Q.
If
α
,
β
,
γ
are the roots of
x
3
+
q
x
+
r
=
0
then
1
α
+
β
−
γ
+
1
β
+
γ
−
α
+
1
γ
+
α
−
β
=
Q.
If
α
and
β
are the roots of the equation
x
2
−
4
x
+
1
=
0
(
α
>
β
)
,
then the value of
f
(
α
,
β
)
=
β
3
2
cosec
2
(
1
2
tan
−
1
β
α
)
+
α
3
2
sec
2
(
1
2
tan
−
1
α
β
)
is
Q.
If α and β are the zeros of the quadratic polynomial f(x) = x
2
− 2x + 3, find a polynomial whose roots are (i) α + 2, β + 2 (ii)
α
-
1
α
+
1
,
β
-
1
β
+
1
.