We have,
f(x)=∫sinπ2(x+1)dx,x≤0
f(x)=∫1.(x+1)dx[sinπ2=1]
=∫(x+1)dx
=∫xdx+∫1dx
On Integrate and we get
=x22+x+C
If [.] denotes greatest integer function and f(x) = [x] {sinπ[x+1]+sinπ[x+1]1+[x]}, then