We have,
limθ→0(1−cos4θ1−cos6θ)
We know that
cos2x=1−2sin2x
Therefore,
limθ→0(1−1+2sin22θ1−1+2sin23θ)
limθ→0(sin22θsin23θ)
This is the 00 form.
So, apply L-Hospital rule
limθ→0(2sin2θcos2θ(2)2sin3θcos3θ(3))
limθ→0(2sin4θ3sin6θ)
This is the 00 form.
So, apply L-Hospital rule
limθ→0(2cos4θ(4)3cos6θ(6))
=limθ→0(8cos4θ18cos6θ)
=8cos018cos0
=818
=49
Hence, this is the answer.