wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: limx0(cosecxcotx)

Open in App
Solution

limx0(cosecxcotx)
=limx0(1sinxcosxsinx)
Using cosec θ=1sinθ
cotθ=cosθsinθ
=limx01cosxsinx
putting x = 0
=1cos0sin0
=110
=00
Hence,we need to simplify
limx01cosxsinx
=limx01cosxsinx×1+cosx1+cosx
=limx012cos2xsinx(1+cosx)
=limx01cos2xsinx(1+cosx)
=limx0sin2xsinx(1+cosx)
=limx0sinx(1+cosx)
Putting x = 0
=sin0(1+cos0)
=01+1
=02
=0

1174697_1249952_ans_fe5fcc86aa2b430b88273e577782edd2.PNG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon