1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Algebra of Limits
Solve x→ 1 ...
Question
Solve
lim
x
→
1
x
3
+
3
x
2
−
6
x
+
2
x
3
+
3
x
2
−
3
x
−
1
Open in App
Solution
lim
x
→
1
x
3
+
3
x
2
−
6
x
+
2
x
3
+
3
x
2
−
3
x
−
1
=
lim
x
→
1
(
x
−
1
)
(
x
2
+
4
x
−
2
)
(
x
−
1
)
(
x
2
+
4
x
+
1
)
[
∵
a
3
+
b
3
=
(
a
+
b
)
(
a
2
−
a
b
+
b
2
)
]
=
lim
x
→
1
x
2
+
4
x
−
2
x
2
+
4
x
+
1
=
3
6
=
1
2
Suggest Corrections
0
Similar questions
Q.
lim
x
→
1
x
3
+
3
x
2
−
6
x
+
2
x
3
+
3
x
2
−
3
x
−
1
Q.
Solve:
3
tan
−
1
x
=
tan
−
1
(
3
x
−
x
3
1
−
3
x
2
)
Q.
Solve:
y
=
tan
−
1
(
3
x
−
x
3
1
−
3
x
2
)
,
−
1
√
3
<
x
<
1
√
3
Q.
The polynomial which when divided by −x
2
+ x − 1 gives a quotient x − 2 and remainder 3, is
(a) x
3
− 3x
2
+ 3x − 5
(b) −x
3
− 3x
2
− 3x − 5
(c) −x
3
+ 3x
2
− 3x + 5
(d) x
3
− 3x
2
− 3x + 5