wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve using formula.
(1) x2 + 6x + 5 = 0
(2) x2 – 3x – 2 = 0
(3) 3m2 + 2m – 7 = 0
(4) 5m2 – 4m – 2 = 0
(5) y2+13y=2
(6) 5x2 + 13x + 8 = 0

Open in App
Solution

(1) x2 + 6x + 5 = 0
On comparing with the equation ax2+bx+c=0,
a = 1, b = 6 and c = 5
Now b2-4ac=62-4×1×5=36-20=16
x=-b±b2-4ac2a
x=-6±162×1=-6±42x=-6+42 or x=-6-42x=-1 or x=-5

(2) x2 – 3x – 2 = 0
On comparing with the equation ax2+bx+c=0,
a = 1, b = -3 and c = -2
Now b2-4ac=-32-4×1×-2=9+8=17
x=-b±b2-4ac2a
x=3±172×1=3±172x=3+172 or x=3-172

(3) 3m2 + 2m – 7 = 0
On comparing with the equation ax2+bx+c=0,
a = 3, b = 2 and c = -7
Now b2-4ac=22-4×3×-7=4+84=88
x=-b±b2-4ac2a
x=-2±882×3=-2±886x=-2+886 or x=-2-886x=-1+223 or -1-223

(4) 5m2 – 4m – 2 = 0
On comparing with the equation ax2+bx+c=0,
a = 5, b = – 4and c = -2
Now b2-4ac=-42-4×5×-2=16+40=56
x=-b±b2-4ac2a
x=-4±562×5=-4±5610x=-4+5610 or x=-4-5610x=-2+145 or -2-145

(5) y2+13y=2
Multiplying the equation by 3
3y2+y=63y2+y-6=0
On comparing with the equation ax2+bx+c=0,
a = 3, b = 1 and c = -6
Now b2-4ac=12-4×3×-6=1+72=73
x=-b±b2-4ac2a
x=-1±732×3=-1±736x=-1+736 or x=-1-736

(6) 5x2 + 13x + 8 = 0
On comparing with the equation ax2+bx+c=0,
a = 5, b = 13 and c = 8
Now b2-4ac=132-4×5×8=169-160=9
x=-b±b2-4ac2a
x=-13±92×5=-13±310x=-13+310 or x=-13-310x=-1010 or x=-1610x=-1 or x=-85



flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving an Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon