wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve : (x21)dydx+2xy=1x21

Open in App
Solution

(x21)dydx+2xy=1x21
Dividing by (x21) on both sides, we get,
dydx+2xy(x21)=1(x21)2
dydx+(2xx21)y=1(x21)2
Compare with dydx+P(x)y=Q(x) and using yeP(x)dx=Q(x).eP(x)dxdx
Here P(x)=2xx21
Thus P(x)dx=2xx21dx=log(x21)
Hence, eP(x)dx=elog(x21)=x21
Therefore, y(x21)=1(x21)2.(x21)dx=11x2dx
=12(x+1(x1))(x+1)(x1)
=12dx(x1)dx(x+1)
=12[log(x1)log(x+1)]
Thus y(x21)=12log(x1x+1)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon