dydx=1+x+y+xy
dydx=y(x+1)+(x+1)
dydx=(x+1)(y+1)
dyy+1=(x+1)dx
Now, integrating both sides,
∫dydx=∫(x+1)dx
⇒ ln(y+1)=x22+x+c
Now, taking exponential both sides,
⇒ y+1=ex22+x+c
∴ y=ex22+x+c−1x2−3x+12=5
⇒x2−3x+12=0
⇒x=3±√(−3)2−4×1×72
⇒x=3±√9−282
⇒x=3±√−192
⇒x=3±√19i2