Given x2−7x+12=0
This is in the form ax2+bx+c=0 where, a = 1, b = -7 and c = 12
Quadratic formula is, x=−b±√b2−4ac2a
By substituting the values, we get
x=−(−7)±√(−7)2−4×1×122×1=7±√49−482=7±√12=7±12
If x=7+12=82=4 x=7−12=62=3
∴ 4 and 3 are the roots of x2−7x+12=0