wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve : (x2D2+3xD+1)y=1(1x)2

Open in App
Solution

Given,

(x2D2+3xD+1)y=1(1x)2......(1)

Let, x=ez,z=lnx,x>0,ddzθ

xDθ,x2D2θ(θ1)

substituting these in equation (1)

(θ(θ1)+3θ+1)y=1(1ez)2

(θ2+2θ+1)y=1(1ez)2....(2)

The general solution is given by, y=yc+yp

yc=c1ez+c2zez

yp=1θ2+2θ+11(1ez)2

=1θ+1{1θ+11(1ez)2}

=1θ+1{ez1(1ez)2ezdz}

=1θ+1{ez1ez}

=ezez1ezezdz

=ezln|ez1|

yp=ezln|ez1|

y=c1ez+c2zezezln|ez1|

y=c1x1+c2(lnx)x1x1ln|x11|

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon