Solve x2dydx=x2+xy+y2.
Given that, x2dydx=x2+xy+y2⇒dydx=1+yx+y2x2...(i)Let f(x,y)=1+yx+y2x2f(λx,λy)=1+λyλx+λ2y2λ2x2f(λx,λy)=λ0(1+yx+y2x2) =λ0f(x,y)
which is homogeneous expression of degree 0.
Put y=vx⇒dydx=v+xdvdx
On substituting these values in Eq. (i), we get
(v+xdvdx)=1+v+v2⇒xdvdx=1+v+v2−v⇒xdvdx=1+v2⇒dv1+x2=dxx
On integrating both sides, we get
tan−1v=log|x|+C⇒tan−1(yx)=log|x|+C