Solve
x2+x√2+1=0
Here, x2+x√2+1=0
Comparing the given quadratic equation with
a=1, b=1√2 and c=1
∴ x=−1√2±√(1√2)2−4×1×12×1
=−1√2±√12−42=−1√2±√−722
=−1±√7i2√2
Thus x=−1+√7i2√2 and x=−1−√7i2√2
x2+x+1√2=0
x2−x+2=0
x2+3=0
x2+3x+5=0
x2+3x+9=0