Solve
x2+x+1√2=0
Here x2+x+1√2=0
Comparing the given quadratic equation with
ax2+bx+c=0, we have
a=1, b=1 and c=1√2
∴ x=−1±√(1)2−4×1×1√22×1
=−1±√1−2√22=−1±√(2√2−1) i2
Thus x=−1+√(2√2−1) i2
and x=−1√(2√2−1) i2
x2+x√2+1=0
x2−x+2=0
x2+3=0
x2+3x+5=0
x2+3x+9=0