(x2−y2)dx−xydy=0
dydx=x2−y2xy
Let y=vx, dydx=v+xdvdx
v+xdvdx=x2−v2x2vx2=1−v2v
xdvdx=1−v2−v2v
∫v1−2v2dv=∫dxx
Let v2=t2vdv=dt
∫dt2(1−2t)=∫dxx
−14ln(1−2t)=lnx+c
4lnx+ln(1−2t)+c=0
lnx4+ln(1−2v2)+c=0
lnx4+ln(1−2y2x2)+c=0
lnx4+ln(x2−2y2)−ln(x)2+c=0
lnx2+ln(x2−2y2)+c=0
2lnx+ln(x2−2y2)+c=0