x+2+y+3+√(x+2)(y+3)=39
(x+2)2+(y+3)2+(x+2)(y+3)=741
Let x+2=p,y+3=q.
p+q+√pq=39⟶I
p2+q2+pq=741⟶II
⟹p+q−39=−√pq
Squaring on both sides:-
⟹p2+q2+1521+2pq−78p−78q=pq
⟹p2+q2+pq=78p+78q−1521⟶III
Subtracting II from III
78p+78q−1521−741=0
78p+78q−2262=0
p+q=29⟶IV
From I
√pq=10
pq=100⟶V
p−q=√(p+q)2−4pq
=√841−400
=√441=21⟶VI
Adding IV and VI
2p=50
p=25,q=4
x+2=25,y+3=4
x=23,y=1