x2−yz=a2 .......(i)
y2−zx=b2 ........(ii)
z2−xy=c2 ........(iii)
Multiplying (i) by y, (ii) by z, (iii) by x and adding
⇒c2x+a2y+b2z=0 .........(1)
Now multiplying (i) by z, (ii) by x, (iii) by y and adding
⇒b2x+c2y+a2z=0 ............(2)
Solving (1) and (2) by cross multiplication
xa4−b2c2=yb4−c2a2=zc4−a2b2=k⇒x=k(a4−b2c2),y=k(b4−c2a2),z=k(c4−a2b2).....(iv)
Substituting x,y,z in (i)
(k(a4−b2c2))2−k2(b4−c2a2)(c4−a2b2)=a2⇒k2((a4−b2c2)2−(b4−c2a2)(c4−a2b2))=a2⇒k2(a8+b4c4−2a4b2c2−b4c4+a2b6+a2c6−2a4b2c2)=a2⇒k2=a2a8+a2b6+a2c6−3a4b2c2⇒k2=1a6+b6+c6−3a2b2c2⇒k=±1√a6+b6+c6−3a2b2c2
Substituting k in (iv)
⇒x=±a4−b2c2√a6+b6+c6−3a2b2c2⇒y=±b4−c2a2√a6+b6+c6−3a2b2c2⇒z=±c4−a2b2√a6+b6+c6−3a2b2c2