P(x)=x3−3x2−9x−5p(−1)=−1−3+9−5=0
∴−1 is the root of p(x)
x+1 divided p(x)
x+1)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x3−3x3−9x−5(x2−4x−5 x3+x2−−______________________−4x2−9x−4x2−4x++_____________________−5x−5−5x−5_____________________x
x3−3x2−9x−5=(x+1)(x2−4x−5)
=(x+1)(x2−4x+22−22−5)
=(x+1)(x2+4−4x−9)
=(x+1)[(x−2)2−32]
=(x+1)(x−2+3)(x−2−3)
=(x+1)(x+1)(x−5)
∴x3−3x2−9x−5=(x+12)(x−5)