Given,
x3+6x2+12x+16=x3+6x2+12x+8+8=x3+3⋅2⋅x2+3⋅22⋅x+23+8=(x+2)3+23
Using another identity we get,
=(x+2+2)[(x+2)2−2(x+2)+22]=(x+4)[x2+4x+4−2x−4+4]=(x+4)(x2+2x+4)
This is the factorisation.
Now, to find solutions we have to make the factorisation equal to zero.
∴(x+4)(x2+2x+4)=0
For,
x+4=0⇒x=−4
For,
x2+2x+4=0⇒x=(−2)±√(−2)2−4⋅1⋅42⋅1=(−2)±√−122,buttheserootsareimaginary∴x=−4
Hence, x=−4 is the required solution.