Given equation is x4−5x3+5x2+5x−6=0Let α,β,γ,δ be the rootd of the equation.
Then given α×β=3
From the equation, α+β+γ+δ=5 .........(1)
αβ+αδ+αγ+βγ+βδ+γδ=5 ..........(2)
αβγ+αβδ+αγδ+βγδ=−5 .........(3)
αβγδ=−6 ...........(4)
From (4),γδ=−63=−2
substituting in (2) ⇒3+βγ+αγ+αδ+βδ−2=5
(α+β)(γ+δ)=4
Let α+β=m⇒m(5−m)=4⇒m=1 or 4
Substituting in (3) ⇒3γ+3δ+α(−2)+β(−2)=−5
⇒3(γ+δ)−2(α+β)=−5
If α+β=1,γ+δ=−1 which does not satisfy (1)
α+β=4,γ+δ=1
and also αβ=3,γδ=−2
solving these we get the roots as 1,3,2,−1.