wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:xcosyx(ydx+xdy)=ysinyx(xdyydx)

Open in App
Solution

Given the differential equation,
xcosyx(ydx+xdy)=ysinyx(xdyydx)ydx+xdyxdyydx=ysinyxxcosyx
By componendo-dividendo,
xdyydx=ysinyx+xcosyxysinyxxcosyxxydydx=x(yxsinyx+cosyx)x(yxsinyxcosyx)dydx=yx⎪ ⎪⎪ ⎪(yxsinyx+cosyx)(yxsinyxcosyx)⎪ ⎪⎪ ⎪
This shows that the given differential equation is homogeneous.
Now, substituting yx=vy=vxdydx=xdvdx+v
The differential equation becomes,
xdvdx+v=v{vsinv+cosvvsinvcosv}xdvdx=v{vsinv+cosvvsinvcosv}vxdvdx=v{vsinv+cosvvsinvcosv1}xdvdx=2vcosvvsinvcosvvsinvcosv2vcosvdv=dxx
Integrating this separable variable type differential equation we get,
vsinvcosv2vcosvdv=dxx+lnc12{vsinvvcosvcosvvcosv}dv=lnx+lnc12(tanv1v)dv=ln(cx)lnsecvlnv=2ln(cx)ln(secvv)=ln(cx)2v=secvc2x2yx=secyxc2x2y=secyxc2xxycosyx=c2
Hence, the required general solution is xycosyx=p,(p=c2).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon