wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: xdydxy+xsin(yx)=0

Open in App
Solution

xdydxy+xsin(yx)=0

Let y=vx

dydx=v+xdvdx

x(v+xdvdx)vx+xsinv=0

xv+x2dvdxvx+xsinv=0

x2dvdx=xsinv

xdvdx=sinv

dvsinv=dxx

Integrating both sides, we get

dvsinv=dxx

cscvdv=dxx

log|cscvcotv|+log|x|=logc

logx|cscvcotv|=logc

x(cscvcotv)=c

x(1sinvcosvsinv)=c

x1cosvsinv=c

x(1cosv)=csinv

x(1cos(yx))=csin(yx) where v=yx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon