xdydx=y(lny−lnx−1)
⇒1ydydx=1x(lny−lnx−1)
⇒1y=dydx=lnyx−(1+lnxx)
⇒1ydydx−lnyx=−(1+lnxx).......(1)
Let lny=t
Differential w.r.t.x both sides
we get,
1ydydx=dtdx
So, eqn (1) becomes,
⇒dtdx−tx=−(1+lnxx).......(2)
Above differential eqn is a linear differential equation of the form:-
dydx+py=Q
∴I.F=e∫Pdx=e∫−1xdx(∵P=−1x in eqn(2))Q=(−(1+lnx)x)
we know, =e−(lnx)=elnx−1=eln1x=1x(∵elnx=x)
∴ Solution is given by
y×I.F=∫(I.F.×Q)dx+C
So, solution for eqn (2) is given by
t.1x=∫−(1+lnx)x×1xdx+C
=∫−1x2dx−∫lnxx2dx
t.1x=1x−I1.........(3)
Continued : →
Let I1=∫lnxx2dx
Let lnx=u⇒x=e4
Diff we get 1xdx=du
∴I1=∫u(eu)2du
=∫u.e−2udu
using ILATE Rule.
I1=u.∫e−2udu−∫(dudv.∫e−2udu)du
=u×e−2u2−∫1×e−2u−2du
=u×e−2u2+12∫e−2udu
=u×e−2u2+12×e−2u−2+c
=12[ue−2u−12e−2u]+c
putting value of u, we get
I1=12[lnxe−2lnx−12elnx]+c
=12[lnx×elnx−2−12elnx−2]+c
=12[lnx×x−2−12×x−2]+c
=12[lnxx2−12x2]+c
=12[2lnx−12]+c
I1=14x2[lnx2−1]+c
Now Putting value of I1
in eqn (3), we get
t.1x=1x−14x2[lnx2−1]+c
Putting value of t we get.
lnyx=1x−14x2[lnx2−lne]+c(∵lne=1)
lny=4x−ln(x2×e)4x+c
final solution for d eqn.