CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
xdydx=y(logylogx1).

Open in App
Solution

xdydx=y(lnylnx1)
1ydydx=1x(lnylnx1)
1y=dydx=lnyx(1+lnxx)
1ydydxlnyx=(1+lnxx).......(1)
Let lny=t
Differential w.r.t.x both sides
we get,
1ydydx=dtdx
So, eqn (1) becomes,
dtdxtx=(1+lnxx).......(2)
Above differential eqn is a linear differential equation of the form:-
dydx+py=Q
I.F=ePdx=e1xdx(P=1x in eqn(2))Q=((1+lnx)x)
we know, =e(lnx)=elnx1=eln1x=1x(elnx=x)
Solution is given by
y×I.F=(I.F.×Q)dx+C
So, solution for eqn (2) is given by
t.1x=(1+lnx)x×1xdx+C
=1x2dxlnxx2dx
t.1x=1xI1.........(3)
Continued :
Let I1=lnxx2dx
Let lnx=ux=e4
Diff we get 1xdx=du
I1=u(eu)2du
=u.e2udu
using ILATE Rule.
I1=u.e2udu(dudv.e2udu)du
=u×e2u21×e2u2du
=u×e2u2+12e2udu
=u×e2u2+12×e2u2+c
=12[ue2u12e2u]+c
putting value of u, we get
I1=12[lnxe2lnx12elnx]+c
=12[lnx×elnx212elnx2]+c
=12[lnx×x212×x2]+c
=12[lnxx212x2]+c
=12[2lnx12]+c
I1=14x2[lnx21]+c
Now Putting value of I1
in eqn (3), we get
t.1x=1x14x2[lnx21]+c
Putting value of t we get.
lnyx=1x14x2[lnx2lne]+c(lne=1)
lny=4xln(x2×e)4x+c
final solution for d eqn.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Tango With Straight Lines !!
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon