wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve : xdydy+yx+xy cotx=0

Open in App
Solution

We have,

xdydx+yx+xycotx=0

Dividing both side by x and we get,

dydx+yx1+ycotx=0

dydx+y(1x+cotx)1=0

dydx+(1x+cotx)y=1

Comparing that,

dydx+Py=Q

Then,

P=1x+cotx and Q=1

Now,

I.F.=ePdx

=e1x+cotxdx

=e1xdx+cotxdx

=elogx+logsinx

=elogxsinx

=xsinx(elogx=x)

Then solution is.

y×I.F.=Q×I.F.dx+C

y(xsinx)=xsinxdx+C

=xsinxdx[1.sinxdx]dx+C

=x(cosx)+(cosx)dx+C

y×I.F.=xcosx+sinx+C

Put the value of y

Then,

y.xsinx=xcosx+sinx+C

y=xcosxxsinx+sinxxsinx+Cxsinx

y=cotx+1x+C1

WhereC1=Cxsinx

Hence, this is the solution.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon