wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: (x+tany)dy=sin2ydx

Open in App
Solution

(x+tany)dy=sin2ydxdxdy=x+tanysin2ydxdy=xsin2y+tanysin2ydxdycosec2y.x=12sec2y(sinx=1cosecx;tanx=sinxcosx;sin2x=2sinxcosx)sincethisisintheformofdxdy+Rx=Swhere,R=cosec2yandS=12sec2yI.F=eRdy=e(cosec2y)dy=elog|cosec2ycot2y|=elog(tany)=elog(coty)=cotysothesolutionofthegivendifferentialequationisgivenbyx.(I.F)=S.(I.F)dy+Cx.(coty)=12sec2y.(coty)dy+Cx.(coty)=1sin2ydy+Cx.(coty)=cosec2ydy+Cx.(coty)=12log|cos2ycot2y|+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon