(x+tany)dy=sin2ydx⇒dxdy=x+tanysin2y⇒dxdy=xsin2y+tanysin2y⇒dxdy−cosec2y.x=12sec2y(∵sinx=1cosecx;tanx=sinxcosx;sin2x=2sinxcosx)sincethisisintheformofdxdy+Rx=Swhere,R=−cosec2yandS=12sec2y∴I.F=e∫Rdy=e∫(−cosec2y)dy=e−log|cosec2y−cot2y|=e−log(tany)=elog(coty)=cotysothesolutionofthegivendifferentialequationisgivenbyx.(I.F)=∫S.(I.F)dy+C⇒x.(coty)=∫12sec2y.(coty)dy+C⇒x.(coty)=∫1sin2ydy+C⇒x.(coty)=∫cosec2ydy+C⇒x.(coty)=12log|cos2y−cot2y|+C