The correct option is
A tan−12y+12x+1=lnc√x2+y2+x+y+12Given differential eqn can eb written as
dydx=x+y+1x−y ....
(1)which is not a homogeneous differential equation.
Here,
a1a2=1;b1b2=−1⇒a1a2≠b1b2So, let
x=X+h,y=Y+kNow,
dydx=dydYdYdXdXdx⇒dydx=dYdX ∵dydY=dxdX=1So eqn
(1) becomes
dYdX=X+h+Y+k+1X+h−Y−k ⇒dYdX=(X+Y)+(h+k+1)(X−Y)+(h−k) ...
(2)Let h and k be such that
h+k+1=0 .....
(3)h−k=0 .....
(4)Solving
(3) and
(4), we get
h=k=−12So, eqn
(2) becomes
⇒dYdX=X+YX−Y .....
(4)which is a homogeneous differential eqn.
Put
Y=VXdYdX=V+XdVdXSo, eqn
(4) becomes
⇒V+XdVdX=X(1+V)X(1−V)⇒XdVdX=V2+11−V⇒1−VV2+1dV=dXXIntegrating both sides,
⇒∫(1V2+1−VV2+1)dV=logX+logkPut
V2+1=t in the second integral
⇒VdV=12dt⇒tan−1V−12log(V2+1)=logX+logc⇒tan−1V=log√1+V2+logX+logc⇒tan−1V=log(cX√1+V2)⇒tan−1(YX)=log(c√X2+Y2)⇒tan−1(y−kx−h)=log(c√(x−h)2+(y−k)2)
⇒tan−1⎛⎜
⎜
⎜⎝y+12x+12⎞⎟
⎟
⎟⎠=log⎛⎝c√(x+12)2+(y+12)2⎞⎠
⇒tan−1(2y+12x+1)=log(c√x2+y2+x+y+12)