The correct option is D yln(yx)−y+xlnx+cx=0
ylnx−ylny+xdydx(lny−lnx)+x=0
Substituting y=xv⇒dydx=v+xdvdx
⇒x+x(−lnx+ln(xv))(xdvdx+v)+x(lnx)v−x(lnxv)v=0⇒x(xlnvdvdx+1)=0⇒dvdx=−1xlnv⇒lnvdvdx=−1x
Integrating both sides
∫lnvdvdxdx=∫−1xdx⇒−v+(lnv)v=−lnx+c⇒−yx+(lnyx)yx=−lnx+c⇒y(lnyx)−y+xlnx+cx=0