wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve xdy=[y+cos2(yx)]dx

Open in App
Solution

dxy=[y+cos2(yx)]dx
yx=t
y=tx
dydx=xdtdx+t(1)
dydx=yx+cos2(yx)x(2)
xdtdx+t=t+cos2txfrom(1)
xdtdx=cos2tx
dtcos2t=dxx
sec2tdt=dxx
Integrating both sides we get
tant=(n|x|)+(n|c|)
c=content
tant=(n|cx|)
t=tan1(n|cx|)
yx=tan1(n|cx|)
y=xtan1(n|cx|)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon