dxy=[y+cos2(yx)]dx
yx=t
y=tx
dydx=xdtdx+t−−−−−(1)
dydx=yx+cos2(yx)x−−−−−(2)
⇒xdtdx+t=t+cos2tx−−−−−from(1)
⇒xdtdx=cos2tx
⇒dtcos2t=dxx
⇒sec2tdt=dxx
Integrating both sides we get
tant=(n|x|)+(n|c|)
c=content
tant=(n|cx|)
t=tan−1(n|cx|)
yx=tan−1(n|cx|)
y=xtan−1(n|cx|)