Solve y=(1+x)(1+x2)(1+x4),thendydxatx=0is
If y=(1+x)(1+x2)(1+x4).....(1+x2n),then(dydx)x=0=
If y = (1+x)(1+x2)(1+x4)....(1+x2n), then dydx at x = 0 is
limx→−1(1+x)(1−x2)(1+x3)(1−x4)....(1−x4n)[(1+x)(1−x2)(1+x3)(1+x4).......(1−x2n)]2is equal to: