x2+yz+z2=49……(1)
z2+zx+x2=19……(2)
x2+xy+y2=39……(3)
Subtracting (2) from (1), we get
y2−x2+z(y−x)=30⟹(y−x)(x+y+z)=30……(4)
Similarly from (1) and (3), we get
(z−x)(x+y+z)=10……(5)
Dividing (4) and (5), we get
y−xz−x=3⟹y=3z−2x
Substituting the in equation (3), we get
x2−3xz+3z2=13……(6)
We have equation (2) and (6) as homogenous in x and z, hence substituting z=mx in them, we get
x2(m2+m+1)=19andx2(3m2−3m+1)=13
∴m2+m+13m2−3m+1=1913
Solving the above, we get m=11 and m=23
Substituting the value of m in the above equations and solving for x,y,z we get
x=±2,y=±5,z=±3andx=±11√7,y=±19√7,z=±1√7