The correct option is
B y=b1(c−x)r3x3y+dydx=r3xy2⇒−dydxy2−3y=−r3xLet
v=1y⇒dvdx=−dydxy2dvdx−3v=−r3xLet
μ=e∫−3dx=e−3xdvdxe3x−3ve3x=−r3xe3xSubstitute
−3e−3x=ddx(e−3x)dvdxe3x+ddx(e−3x)v=−r3xe3x
Using gdfdx+fdgdx=ddx(fg)
ddx(ve3x)=−r3xe3x⇒∫ddx(ve3x)dx=∫−r3xe3xdx⇒ve3x=−r3x3(logr−1)e3x
Hence y=b1(c−x)r3x