yeydx=(y3+2xey)dy
dxdy=y3+2xeyyey by dividing the above equation by yey
⇒dxdy−2yx=y2e−y by seperating the variables
dxdy−2yx=y2e−y is of the form dxdy+Px=Q
where P=2y and Q=y2e−y
Integrating Factor=I.F=x× I.F=∫Q×I.Fdy+c
xy2=∫y2e−y×1y2dy+c
=−e−y+c where ∫e−xdx=−e−x+c
⇒xy2=−e−y+c
⇒x=−y2e−y+cy2