y=(sinx)x+xsinxTaking log on both sides
logy=xlogsinx+sinxlogx
Differentiating both sides we get
⇒1ydydx=xddxlogsinx+logsinx+sinxddx(logx)+logxddx(sinx)=xsinxcosx+logsinx+sinx.1x+logxcosx=xcotx+logsinx+sinxx+logxcosx∴dydx=((sinx)x+xsinx)(xcotx+logsinx+sinxx+logxcosx)