wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve y=(sinx)x+xsinx

Open in App
Solution

y=(sinx)x+xsinx
Taking log on both sides
logy=xlogsinx+sinxlogx
Differentiating both sides we get
1ydydx=xddxlogsinx+logsinx+sinxddx(logx)+logxddx(sinx)=xsinxcosx+logsinx+sinx.1x+logxcosx=xcotx+logsinx+sinxx+logxcosxdydx=((sinx)x+xsinx)(xcotx+logsinx+sinxx+logxcosx)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon