Given that,
y=tan−1(3x−x31−3x2),−1√3<x<1√3
Put x=tanθ then, θ=tan−1x
y=tan−1(3tanθ−tan3θ1−3tan2θ)
y=tan−1tan3θ
y=3θ
y=3tan−1x,−1√3<x<1√3
Find the cube of x+1x