wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve
y=tan1(cosx1sinx).

Open in App
Solution

Given,
to solve tan1(cosx1sinx)
Let us try to solvecosx1sinx
since as we know that
cosx 1sinx
cos2x=cos2xsin2x sin2x=2sinxcosx
Let x=x2 Let x=x2
cos(2x2)=cos2x2sin2x2 sin(2x2)=2sinx2cosx2
cosx=cos2x2sin2x2…...(1) sinx=2sinx2cosx2….(2)
tan1(cosx1sinx)=tan1⎢ ⎢cos2x2sin2x212sinx2cosx2⎥ ⎥…….(3)
Since we know that sin2x+cos2x=1
then, sin2x2+cos2x2=1
=tan1⎢ ⎢cos2x2sin2x2sin2x2+cos2x22sinx2cosx2⎥ ⎥
as we know that a2b2=(a+b)(ab)
and (ab)2=a2+b22ab, here a=cosx2, b=sinx2
So, now we get,
tan1⎢ ⎢(cosx2sinx2)(cosx2+sinx2)(cosx2sinx2)2⎥ ⎥
tan1⎢ ⎢cosx2+sinx2cosx2sinx2⎥ ⎥
dividing by cosx2 we get,
we are dividing with cosx2 because, we need cosx2+sinx2cosx2sinx2 in terms of tan,
and as we know that tan(x+y)=tanx+tany1tanxtany
So, that is why let us divide whole equation with cosx2
tan1⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢cosx2cosx2+sinx2cosx2cosx2cosx2sinx2cosx2⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
tan1⎢ ⎢1+tanx21tanx2⎥ ⎥
[sinθcosθ=tanθ]
tan1⎢ ⎢1+tanx211.tanx2⎥ ⎥ [tanπ4=1]
tan1⎢ ⎢1tanx21tanπ4tanx2⎥ ⎥
( IT is in the form of tan(x+y) as tan(x+y)=tanx+tany1tanxtany)
tan1⎢ ⎢tanπ4+tanx21tanπ4tanx2⎥ ⎥
Here, x=π4,y=x2, we get,
tan1[tan[π4+x2]]
[tan11tan]
1tan[tan[π4+x2]]=π4+x2
tan1(cosx1sinx)=π4+x2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Special Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon