Given,
to solve tan−1(cosx1−sinx)
Let us try to solvecosx1−sinx
since as we know that
cosx 1−sinx
cos2x=cos2x−sin2x sin2x=2sinxcosx
Let x=x2 Let x=x2
cos(2x2)=cos2x2−sin2x2 sin(2x2)=2sinx2cosx2
cosx=cos2x2−sin2x2…...(1) sinx=2sinx2cosx2….(2)
∴tan−1(cosx1−sinx)=tan−1⎡⎢
⎢⎣cos2x2−sin2x21−2sinx2cosx2⎤⎥
⎥⎦…….(3)
Since we know that sin2x+cos2x=1
then, sin2x2+cos2x2=1
=tan−1⎡⎢
⎢⎣cos2x2−sin2x2sin2x2+cos2x2−2sinx2cosx2⎤⎥
⎥⎦
∵ as we know that a2−b2=(a+b)(a−b)
and (a−b)2=a2+b2−2ab, here a=cosx2, b=sinx2
So, now we get,
⇒tan−1⎡⎢
⎢⎣(cosx2−sinx2)(cosx2+sinx2)(cosx2−sinx2)2⎤⎥
⎥⎦
⇒tan−1⎡⎢
⎢⎣cosx2+sinx2cosx2−sinx2⎤⎥
⎥⎦
dividing by cosx2 we get,
we are dividing with cosx2 because, we need cosx2+sinx2cosx2−sinx2 in terms of tan,
and as we know that tan(x+y)=tanx+tany1−tanxtany
So, that is why let us divide whole equation with cosx2
⇒tan−1⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣cosx2cosx2+sinx2cosx2cosx2cosx2−sinx2cosx2⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
⇒tan−1⎡⎢
⎢⎣1+tanx21−tanx2⎤⎥
⎥⎦
[∵sinθcosθ=tanθ]
⇒tan−1⎡⎢
⎢⎣1+tanx21−1.tanx2⎤⎥
⎥⎦ [∵tanπ4=1]
⇒tan−1⎡⎢
⎢⎣1−tanx21−tanπ4tanx2⎤⎥
⎥⎦
(∵ IT is in the form of tan(x+y) as tan(x+y)=tanx+tany1−tanxtany)
⇒tan−1⎡⎢
⎢⎣tanπ4+tanx21−tanπ4⋅tanx2⎤⎥
⎥⎦
Here, x=π4,y=x2, we get,
⇒tan−1[tan[π4+x2]]
[∵tan−11tan]
⇒1tan[tan[π4+x2]]=π4+x2
∴tan−1(cosx1−sinx)=π4+x2.