We have,
ydx−xdy=x2ydx
ydx−x2ydx=xdy
y(1−x2)ydx=xdy
(1−x2x)dx=dyy
(1x−x2x)dx=dyy
1xdx−x2xdx=dyy
1xdx−xdx=dyy
on integrating we get,
logx−x22=logy+logC
logx−x22=logyC
logyC−logx=−x22
logyCx=−x22
yCx=e−x22
yC=xe−x22
y=e−x22C
y=C1e−x22∴C1=1C
Hence this is the answer.