The correct option is B
m,n
Let 1x=a,1y=bmx+n2y=1+n⇒am+n2b=1+n...(1)m2x−n2y=m−n⇒am2−n2b=m−n......(2)From equation (1),we get:am+n2b=1+n⇒n2b=1+n−am....(3)Substituting n2b=1+n−am in (2),we get:am2−n2b=m−n ⇒am2+am=m−n+1+n⇒am(m+1)=(m+1)⇒am=1∴ a=1mSubstituting the value of a=1m in equation (1),We get:am+n2b=1+n⇒m(1m)+n2b=1+n⇒1+n2b=1+n⇒n2b=n⇒b=nn2⇒b=1n∵ a=1m⇒1x=1m⇒x=mb=1n⇒1y=1n⇒y=n