Solving for x of the given equation log5(51x+125)=log56+1+12x we get two solutions.Let they be m, n. Find 1m∗n ?
Open in App
Solution
log5⎛⎜⎝51x+125⎞⎟⎠=log56+1+12x log5⎛⎜
⎜
⎜⎝51x+1256⎞⎟
⎟
⎟⎠=1+12x 51+12x=51x+1256 ⇒51/x−30(51/2x)+125=0 Substitute 51/2x=t ⇒t2−30t+125=0 ⇒(t−25)(t−5)=0 ⇒t=25,5 ⇒51/2x=25,51/2x=5 ⇒12x=2,12x=1 ⇒x=12,14 From the given eqn , it follows that 51/x+125>0 51/x>−53 Clearly, x=12,14 satisfies above inequality. Thus, x=12,14 are the solution of given eqn