Solving 52+x+1y−4=2; 62+x−3y−4=1,
we get
x =
y =
Let, p= 12+x and q = 1y−4
Thus, given equations reduce to,
5p+q=2---- (i)
6p−3q=1-----(ii)
Multiply (i) with 3 then add with (ii), we get
p=13 and q=13
Now, p=12+x
⇒13=12+x
⇒x=1
q=1y−4
⇒13=1y−4
⇒y=7