The correct option is B a tan(θ)
Here, we assume x=a tan(θ), then we get,dx=a sec2θ dθ, now substituting this x and dx in the integral we get,
Integral I=∫a sec2θ dθ√a2+a2tan2θ
⇒I=∫secθ=ln(tanθ+secθ)+C
Now substituting back for tanθ=xa and secθ=√x2+a2a
We get I=ln(x+√x2+a2∣∣+C.