Let u= √(2x2+5x−2)
and v = √2x2+5x−9
∴u2=2x2+5x−2andv2=2x2+5x−9
So, the given equation reduces to u−v=1 ....(1)
Now, u2−v2=7
⇒(u+v)(u−v)=7
⇒u+v=7(∵u−v=1) ....(2)
Solving (1) and (2),we get
u=4,v=3
∴√(2x2+5x−2)=4
⇒2x2+5x−18=0
⇒x1=2 ;x2=−92
Both roots satisfies the original equation .
Hence x1=2 and x2=−92 are the roots of the original equation.
Required product =−2×(−92)=9