Solving the inequation log(25−x216)(24−2x−x214)>1 we get x∈((k,y)∪(z,w)).Find k+y+z+w?
Open in App
Solution
The given inequaiton is valid for 24−2x−x214>0and25−x216>0∴x2+2x−24<0andx2−25<0⇒(x+6)(x−4)<0and−5<x<5⇒−6<x<4and−5<x<5 combining both inequality −5<x<4......(1) Now consider the following cases: Case I: If 0<25−x216<1⇒9<x2<25 ∴xϵ(−5,−3)∪(3,5).........(2) ∴ The given inequation convert in the form 24−2x−x214<25−x216 ⇒x2+16x−17>0 ∴xϵ(−∞,−17)∪(1,∞).........(3) combining (2) and (3), we get ∴xϵ(3,5)but−5<x<4 {from(1)} ∴xϵ(3,4) ...........(4) Case II: If25−x216<1⇒xϵ(−3,3)......(5) ∴ The given inequation convert in the form 24−2x−x214>25−x216 24−2x−x214>25−x216<1⇒xϵ(−3,3)......(5)⇒x2+16x−17<0∴xϵ(−17,1)...........(6) combining (5) and (6), we get ∴xϵ(−3,1)but−5<x<4{from(1)}∴xϵ(−3,1) Now combining (4) and (7), the inequaiton have the final solution is xϵ(−3,1)∪(3,4)