The correct option is C 0.05sinπt−0.0173cosπt
Given that
y1=0.06sinπt & y2=0.02sinπt
So, ω=π
Also, v=3 m/s [given]
Angular wave number (k)=ωv=π3 rad/m
Now, equation of disturbance due to source 1
y1=0.06sin(πt−kx)=0.06sin(πt−π/3×12)
⇒y=0.06sin(πt−4π)
Similarly,
y2=0.02(πt−kx′)=0.02(πt−π3×8)
⇒y2=0.02sin(πt−8π3)
Now, applying principle of superposition.
y=y1+y2
=0.06sin(πt−4π)+0.02sin(πt−8π3)
Using sin(A−B)=sinAcosB−cosAsinB,
=0.06sin(πt)+0.02[sinπtcos8π3−cosπtsin8π3]
sin8π3=sin(2π+2π3)=sin2π3
and cos8π3=cos(2π+2π3)=cos2π3
Substituting in equation,
y=0.06sinπt−0.01sinπt−0.0173cosπt]
i.e y=0.05sinπt−0.0173cosπt