wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Sovle the differential equation: (1+x2)dydx+y=etan1x

Open in App
Solution

Given (1+x2)dydx+y=etan1x dydx+11+x2y=etam1x1+x2

This is linear differential equation of the form dydx+P(x)y=Q(x)

So, P(x)=11+x2,Q(x)=etan1x1+x2.

Now, I.F =e11+x2dx=etan1x

required solution is : y(etan1x)=etan1xetan1x1+x2dx+C

y(etan1x)=tdt+C [Putetan1x=tetan1x1+x2dx=dt]

y(etan1x)=t22+C y(etan1x)=12e2tan1x+C

y=12etan1x+Cetan1x is the required solution.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon