Sovle the differential equation: (1+x2)dydx+y=etan−1x
Given (1+x2)dydx+y=etan−1x ⇒dydx+11+x2y=etam−1x1+x2
This is linear differential equation of the form dydx+P(x)y=Q(x)
So, P(x)=11+x2,Q(x)=etan−1x1+x2.
Now, I.F =e∫11+x2dx=etan−1x
∴ required solution is : y(etan−1x)=∫etan−1xetan−1x1+x2dx+C
⇒y(etan−1x)=∫tdt+C [Putetan−1x=t⇒etan−1x1+x2dx=dt]
⇒y(etan−1x)=t22+C ⇒y(etan−1x)=12e2tan−1x+C
∴ y=12etan−1x+Cetan−1x is the required solution.