wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the roots of the equation ax2+2bx+c=0 be alpha and beta and those of the equation Ax2+2Bx+C=0 be alpha+delta and beta+delta prove that,
b2-aca2=B2-ACA2

Open in App
Solution

Dear Student,

ax2+2bx+c=0 has roots α and βα+β=-2baba=-α+β2and αβ=ca eq1Ax2+2Bx+C=0 has roots α+δ and β+δ α+δ+β+δ=-2BABA=-α+2δ+β2and α+δβ+δ=CA eq2now To prove b2-aca2=B2-ACA2L.H.S.=b2-aca2=b2a2-ca=-α+β22-αβ using eq1=α+β22-αβ =α2+β2+2αβ-4αβ4=α2+β2-2αβ4=α-β24R.H.S.=B2-ACA2=B2A2-CA=-α+2δ+β22-α+δβ+δ=α+2δ+β22-α+δβ+δ=α2+4δ2+β2+4αδ+4δβ+2αβ4-αβ+αδ+δβ+δ2=α2+4δ2+β2+4αδ+4δβ+2αβ-4αβ+αδ+δβ+δ24=α2+4δ2+β2+4αδ+4δβ+2αβ-4αβ-4αδ-4δβ-4δ24=α2+β2+2αβ-4αβ4=α2+β2-2αβ4=α-β24L.H.S.=R.H.S.

Regards

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Cosine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon